Collective Behavior of Thermally Active Colloids
نویسندگان
چکیده
منابع مشابه
Phase behavior of thermally responsive microgel colloids.
The phase behavior of poly-N-isopropylacrylamide (PNIPAM) nanoparticles dispersed in water is investigated using a thermodynamic perturbation theory combined with light-scattering and spectrometer measurements. It is shown how the volume transition of PNIPAM particles affects the interaction potential and determines a novel phase diagram that has not been observed in conventional colloids. Beca...
متن کاملEmergent behavior in active colloids
Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk ...
متن کاملHydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement.
We study the collective motion of confined spherical microswimmers such as active colloids which we model by so-called squirmers. To simulate hydrodynamic flow fields including thermal noise, we use the method of multiparticle collision dynamics. We demonstrate that hydrodynamic near fields acting between squirmers as well as between squirmers and bounding walls crucially determine their collec...
متن کاملCollective thermoelectrophoresis of charged colloids.
Thermally driven colloidal transport is, to a large extent, due to the thermoelectric or Seebeck effect of the charged solution. We show that, contrary to the generally adopted single-particle picture, the transport coefficient depends on the colloidal concentration. For solutions that are dilute in the hydrodynamic sense, collective effects may significantly affect the thermophoretic mobility....
متن کاملDriven motion of colloids in active microrheology
In active microrheology, a strong external force is applied to a colloidal probe immersed in a complex fluid, so that among other quantities the nonlinear force-velocity relation can be measured. It provides information on the local viscoelastic properties of the complex fluid or soft solid. Generally, in dense fluids, the probe’s friction coefficient decreases strongly with increasing force [1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.108.038303